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OF TROPOSPHERIC WAVE MOTIONS IN EQUATORIAL LATITUDES
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ABSTRACT

The known general solution of the system of linearized equations for non-viscous, adiabatic, quasi-hydrostatic
flow on an equatorially oriented g-plane is examined in detail for various boundary conditions imposed on the motion.

The base state is a space-time invariant zonal current.

The particular solutions examined are those in which the

meridional wind component is distributed either symmetrically or asymmetrically about the equator, and is con-
strained either to vanish at finite distance from the equator or to decay exponentially at large distance from the

equator.

The various solutions considered depict disturbances which are characterized by (1) very small values of

divergence which increase with wavelength (in most cases), (2) relative vorticity which is meteorologically reasonable,
and (3) in general, a non-geostrophic wind-pressure relationship.

1. INTRODUCTION

In a recent study, Rosenthal [1] obtained the general
solution of the linearized system of equations for non-
viscous, adiabatic, quasi-hydrostatic flow on an equa-
torially oriented p-plane. Rosenthal examined one
particular solution in detail, that in which the meridional
wind component was symmetric with respect to the
equator and decayed exponentially with the square ot the
distance from the equator. Subsequently, Matsuno [2]
solved a similar system ot equations. He considered a
class of particular solutions in which the meridional wind
is constrained to approach zero as the distance from the
equator approaches infinity. Rosenthal’s solution was
among those treated by Matsuno. Both Rosenthal and
Matsuno were concerned with the extent to which their
wave solutions could be considered meteorological rather
than inertia-gravitational in nature. Matsuno proceeded
by examining the frequency as a function of wavelength
and by pictorial comparisons between wind and pressure
fields for several of his cases. Rosenthal, on the other
hand, made detailed studies of the wind, pressure, vor-
ticity, and divergence fields and performed numerous
calculations which clearly showed the meteorological
nature of the system.

In this report, other particular solutions are examined
in detail, specifically, solutions in which the meridional
velocity is required to vanish at fixed distances from the
equator. The format of the study is similar to that of
Rosenthal.

In view of the fact that neither Matsuno’s nor Rosen-
thal’s model provides a source of perturbation energy, the

solutions cannot describe the life cycles of the disturbances
under consideration. The results then are artificial in the
sense that waves of this type are relatively steady for all
time and no information is provided concerning their
origin. However, as pointed out by Rosenthal [1], they
do have a remarkable similarity to the equatorial dis-
turbances discussed by Palmer [3]. Furthermore, it
would seem that an understanding of the dynamics of
these simple disturbances is a mandatory prerequisite to
understanding the dynamies of equatorial disturbances in
the real atmosphere.

2. THE SOLUTIONS

The reader is directed to Rosenthal’s paper for the
complete development of the general solution which de-
scribes the model; here only a brief outline of the de-
velopment will be presented. Notation is consistent
with that of Rosenthal.

The linearized equations for non-viscous, adiabatic,
quasi-hydrostatic, g-plane flow are

b¢>_~
o fo 1) 0
0% 0%
bpbt+U + ow=0 (3
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—(g“;+ay) (4)

Here u, v, », and ¢ are, respectively, the perturbation
zonal wind component, meridional wind component,
p-system vertical motion, and geopotential of the iso-
baric surfaces; ¢ is time, x is zonal distance, ¥ is meridional
distance measured positive northward from the equator,
p is pressure, and @ is the meridional rate of change of
the Coriolis parameter f. Here, =constant. ¢=¢ (¥,p), U,
and

()55 ®

are base state quantities with U and 7 assumed constant.

With the condition that » be a maximum at z=0,
p=p,, and {=0, the system of equations (1), (2), (3), (4)
has solutions of the form

u=A(y) sink(z—ct) cos m(p—po) (6)
v=2DB(y) cosk(z—ct) cos m(p—po) (7
¢=H(y) sink(z—ct) cos m(p— po) 8)
w=W(y) cosk(z—ct) sin m(p—po) 9

where k=2=/L,L is the wavelength, ¢ equals the wave speed,
and m=nr/p, n=1, 2, Substitution of equations
(6), (7), (8), (9) into equations (1), (2), (3), (4) yields a
system of linear differential equations in which the
dependent variables are the coefficients A(y), B(y),
H(y), and W(y). This system may be reduced to a
second order differential equation for the coefficient
B=B(y):

dzB (kz B 62 Azk?)B 0 (10)

where y=35"/m and A=U—c. Equation (10) trans-
forms into a special case of the confluent hypergeometric
equation which is solved to yield the following general
solution for B(y):

B= Kle-ﬂv“’/ﬂM( -1 B?’)

-{—Kﬁ/() —ﬂu2/27M<1 ?f,_3_ é% - (11)

Here K; and K, are arbitrary constants, M(a, b, Z) is the
confluent hypergeometric function {4}, and

_YB—RA(L—AY) A8,
- o (12)

Values of a are determined by the side conditions imposed
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upon the motion. Rearrangement of the terms in equa-
tion (12) gives the frequency equation

1 L2 ’Yzﬁ
—z (B +7/3+2a67)A+k—2=0 (13)

which determines the wave speed (¢c=U—A). In
general, the analytic expressions for the roots of equation
(13) are algebraically complicated [5] (see Appendix) and
cannot be interpreted in a simple manner as was the case
with Rosenthal’s frequency equation.

By setting K;=0, we have the solution,

Bi=Ke~#"""\[ ( 53 63 (14)

in which » is symmetric about the equator and which will
be called the Symmetric Mode.
With K,=0, we have,

32_K2y<ﬁ) -W/Z*M(l _2,3, 33 (15)

and » is constrained to be asymmetric about the equator.
This solution will be called the Asymmetric Mode. The
particular solutions examined in the following sections
will be restricted to either the Symmetric or Asymmetric
Mode.

Matsuno considered only those cases in which the pa-
rameter o took on integral values. For o equal to an even
integer, equation (14) reduces to

Bi=Kje P H, (\/5 y), (14a)

and for o equal to an odd integer equation (15) becomes

By=Kjo-¥H, (\/ f—j y) (158)

where H,(z) is the Hermite polynomial of order n. Mat-
suno took the solution (14a) for even integral values of «
and (15a) for odd integral values of a. These are the
only solutions which do not tend toward infinity as y
becomes large.

If, however, we limit the solutions to a zonal channel
centered on the equator and enforce the boundary con-
dition v=0 at y= 4y, Ww ﬁmte) then « is determined as
a=a* where

L Bys\_
M( 3% )——O (16a)
vy

1_o*3 Byw)_

depending upon whether the Symmetric or Asymmetric
Mode is being considered. For these solutions, the fact
that B; and B, approach infinity as ¢ approaches infinity
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is irrelevant since we are concerned with only the domain
ly|<|y.|. We feel that this is a reasonable approach
since we are interested in disturbances which have their
maximum amplitude in low latitudes and are undetectable
at higher latitudes. Also, since the approximation f=gy
becomes very poor as y becomes large, the system (1), (2),
(3), (4) is unrealistic at large y. This is a second reason
for restricting the solutions to a band of latitudes near the
equator.

For arbitrary values of ¥, a* must be found numerically
through an iterative procedure which operates on a trun-
cated form of M(a, b, Z). Figure 1 shows values ob-
tained in this way. As y, becomes large, as—0 and
as—1. As y, becomes small, ag and a4 both tend toward
infinity.

By use of equations (1), (2), (3), 4), (6), (7), (8), (9),
the remaining amplitude functions are given by

A= [ L2+ B] (17)
H(y):fik?! B—ad (18)

and
W) =" g (19)

THE SYMMETRIC MODE

If we require that v=v, at z=0, y=0, =0, we have,
from equations (7) and (14),

B1(0):K1—

1 2
Blzvoe_wzle(—g’ Q’ B’%)

and

(20)

Substitution of equation (20) into equations (17), (18),

and (19) yields the Symmetric Mode solutions for the

perturbation quantities u, », ¢, and w.

_ vBy —gy? . 2ay
~Faiy) ¢ pu?izy {M M* }

Xsin k(z—ct) cos m(p—mp,) (21)

v=1ee "0/ M cos'k(z—ct) cos m(p—py,) (22)

e i)
Xsin k(z—ct) cos m(p—p,) (23)
and
VAB _ 20A
”’%A—{?{ ) e B2y {M+Ai.y M*}
Xcos k(z—ct) sin m(p—p,) (24)
where

»5?/2
M— -—a 7 ’ —
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Figure 1.—Values of o* and y, such that equations (16a) and
(16b) are satisfied. S and A4 denote, respectively, the curves
which give values of o* appropriate for the Symmetric and
Asymmetric Modes.

and
(1___, 3, By) (24b)
From (22),
Vrmaz =
for all cases in the Symmetric Mode.
By setting a=0,
Blzﬂoe—ﬂﬂ/?y (25)

since

M(0, 3

, By ) 1
this is the case treated by Rosenthal [1].

In this case the solutions for u, », ¢, and w reduce to

VoY

~ka+y) (26)

e~ gin k(z—ct) cos m(p—po)

v=20e"P"1¥ cos k(z—ct) cos m(p—po) (27)
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ovBY  _pey o _ _ _ Koy’ +(a—v)By) (é)”z —a?
o= (At Tt © 8127 gin k(z—ct) cos m(p— po) (28) A=) 5) ¢ Buy°r2v
and .
X {sin k(z—ct) cos m(p—po)} (35)
=§%y—ﬂ e~ 8127 cos k(z—ct) sin m(p— o). (29)
1/2
THE ASYMMETRIC MODE v=Ry (g) e~P21 cos k(z—ct) cos m(p—po) (36)
Substitution of equation (15) into equations (17), (18), ,
and (19) gives the amplitudes of the perturbation quanti- 4— Kz[(A—‘Z )6’!/2‘*A‘Y] (Bry)Hog-motiey
ties for the Asymmetric Mode. The solutions for u, v, k(A*—~?)
¢, and o are X {sin k(z—ct) cos m(p—po)} (37)
(ﬁ)” ? and
ez L 2 (1 - A
k(Ag—'yz) v 7{3 (1—a)yBy"M . K J(A—7)8y—Av] A <_B_>U26~au2/27
N (a*—v*) 7Y
2+ (A— M in k(z—ct — 30
@By} sin k(a—et) cos m(p=2) (30) s cos Eo—et) s mCr—nd L. (58
_ B\Y? _aion it _ _ In the Asymmetric Mode, |¢| is a maximum (2,4, at
v=Kay (7) e IM  cos k(z—ot) cos m(p—po)  (31) Y==Y. where y,, satisfies the condition
Kz(ﬁ')’)l —ay? {
=75 sye/2y (a—-l)Aﬁ;lfM* 2
FA—7) (1=2) #tym +2 (1—0) B2 585, =0 (39)
-}—[(A““Y)B?/Z—’A'y]M} sin k(z—ct) cos m (p—po) (32) 4
an
and Ko— Umaz : ) (40)
B\2 A 9 ~ B\Y? —B;T" ~
=K, (ﬁ) Ay e‘ﬁ”"’/”{g (a—1)ABY*M* [(; Yne Mv=um]
+[(A—7)6y2—A7]Z\~4} cos k(z—ct) sin m (p—po) (33) 3. DISCUSSION
b Table 1 lists the three roots of the frequency equation
where (13). Table 1c lists values of the roots compared with
M=M (1—5 3, —5—;’— (33a) 5
N B e ()
and
e 3_a b By’ (33b) which is the value of A appropriate for nondivergent
27272 motion. The parameter € is % in the Symmetric Mode,

The asymmetric case analogous to (25) is obtained by
setting a=1. This gives
ﬁ 1/2 9
B,=Ky (;> o8, (34)

For the Asymmetric Decay case,! the solutions for w, v,
o, and w are

1 For referonce purposes, solutions (25) and (34) will be referred to, respectively, as the
“Symmetric Decay case’’ and the “Asymmetric Decay case."”

1 in the Asymmetric Mode, and zero in the decay cases
for both modes. For the wavelengths considered, the
roots A; and A, correspond to rapidly moving inertia-
gravity waves. The meteorologically significant root,
which gives small phase speeds relative to the basic
current for wavelengths in the synoptic range, is A;
As pointed out by Matsuno [2], A; can become quite large
at very long wavelengths. However, the wavelengths
at which this occurs are far larger than those considered
here and, in fact, are probably large enough to invalidate
the g-plane approximation.

Further discussion will be limited to the root A; and the
subscript will be omitted. Comparison of A with Ayp
shows that in both modes the difference Ayp— A increases
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TABLE 1.—Values of Ay, Az, As, ANp, Axp— As, computed from the frequency equation.
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Axp 73 a value_of A appropriate for nondivergent motion.

Units are m.[sec., n corresponds to the number of levels of nondivergence, and 5=3 m.t.s. units

n=1 n=2
ZL(km.) Symmetric Asymmetric Symmetric Asymmetric
Decay lqu= [yo|= Decay [¥0|= Y wl= Decay [y w|= Wol= Decay 1Wel= [y ul=
2376 km. 1125 . 2375 . 1125 km. 2375 km 1125 km 2375 km 1125 km
(a) Values of At
—55.7 —55.8 | —568 | -3 | —568 | —60.6 -81 | -®/1 | -86 | -W7 | -m8 -30.5
54 | —s7 | —63 | -59.5 | —6Ld4 | —745 207 | 298 | —3L2 | -3L7 | —320 -31.8
—59.9 —60. 1 ~68.1 —64.4 —68.3 —93.0 —32.0 —32.1 -~35.1 —36.1 -36.7 —47.3
6.2 | —645 | -765 | -70.5 | -768 | —1139 -349 | -390 | -400 | -2 | -—11 —58.0
—67.0 | —689 | -858 | -77.5 —86.2 | —136.0 -38.1 -2 | —447 -46.8 | —481 —69.2
(b) Values of As
55.1 56.2 56.2 55.7 56. 2 60. 1 21.6 27.6 28,0 28.1 28.2 30.0
55.1 55.5 50.4 57.4 50.5 73.2 2.6 2.6 20.3 20.9 30.2 36.5
55.1 56.1 64.5 60.3 64.8 91.2 27.6 27.7 3.5 32.7 33.5 46.5
56.1 56.8 7.2 64.3 71.6 111.7 27.6 27.8 3.5 36.5 37.7 55.8
56,1 57.9 79.3 69.3 79.8 133.6 27.6 28.0 38.2 41.1 42.8 66.8
(c) Values of Ay, Avp, ANp—23
0.579 0.573 0.552 0.579 0.555 0. 484 0.579 0.573 0.552 0.570 0.555 0. 484
0.573 0.571 0. 552 0. 562 0. 551 0,483 0. 567 0. 567 0. 551 Q. 545 0. 542 0.481
0.006 0.002 0000 0.017 0. 004 0. 001 0.012 0. 006 0. 001 0.034 0.013 0.003
2,32 2,22 1,935 2.32 1,97 1,204 2.32 2.22 1.94 2,32 197 1.29
2.23 2.20 1.932 2.06 1.93 1. 290 2.15 2.14 1.92 1.86 1.82 1.28
0.09 0.02 0,008 0.26 0.04 0.004 a.17 0.08 0.02 0. 46 0.15 0.01
5.21 4.74 3. 600 5.21 3.73 1.877 5.91 474 3. 61 5,21 3.73 1.8
4,80 4,65 3. 603 4,08 3.58 1.868 4.48 4. 45 3,59 3.36 3.23 1.84
0.41 0. 09 0. 006 113 0.15 0. 009 0.73 0.29 0.02 1.85 0. 50 0.04
9.27 7.87 5.177 9.27 5.42 2,997 9.7 7.87 5.18 9.27 5.42 2.23
8.08 7.68 5160 6.21 5.12 2,215 7.32 7.23 5.15 4.68 4.43 2.18
119 0.19 0. 008 3.06 0.30 0.012 1.95 0.64 0. 03 4,59 0.99 0.05
14.48 113 6480 | 14,48 6.87 2.438 14,48 134 648 14,48 6.87 244
191 11.02 6. 468 8.20 6.30 2.423 1040 10.29 6.43 5.72 5.35 2.38
2,57 0.32 0.012 6.28 0.48 0.015 3.99 1.06 0.05 8.76 1.52 0.06
. . . . 2
with wavelength and y,. This implies that the model ?_ —kB 04 [ B +_1_ (Byt—A2 kz)] B
. . . - 2 2 2
divergence has greater significance at longer wavelengths, k(A*—v?) Ay
but for a given wavelength the significance diminishes as AB dB
o 3 o +28(B+y o) b (a1)
the latitudinal extent of the perturbation is reduced. In 72 dy
general, the model divergence appears to be more signifi- ., 4
cant in the Asymmetric Mode. dB
: - D=2 4% 1pyB | (42)
As was pointed out by Rosenthal for the Symmetric A%y

Decay case, the effect of the divergence is a retardation of
the westward movement of the perturbations relative to
the basic current as is evidenced by the difference Ayp—A.
Hence, in both modes, the divergence patterns must be as
described by Rosenthal; i.e., there is divergence to the
west of the cyclonic relative vorticity centers and con-
vergence to the east of these centers.? Also, we can
expect the magnitude of the Asymmetric Mode divergences
to be larger than those of the Symmetric Mode.

The amplitudes of the model relative vorticity { and the

A
model divergence D) can be written in terms of the am-
plitude of »,

2 This follows from an examination of the model vorticity equation

o (a5 )= (5+5) -

In the Symmetric Mode, |§| is a maximum at the
equator,

Bug

A (43)

l?lmaz:

which is a function of wavelength and y, (through 4).3
Table 2 lists values of |{|ne for this mode. In the
Asymmetric Mode, {=0 at the equator and maximum
values of |{| occur at points symmetrically equidistant
from the equator. Table 3 lists values of \f|ma, along
with the distances from the equator at which they occur.

Both tables 2 and 3 show that |?|,,,,zz has a magnitude
which is meteorologically significant and which decreases
with increasing wavelength except in the cases y,= +1125

3 Rosenthal’s equation (51) reduces to (43).
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TABLE 2.—Values of $wmax for the cases in the Symmetric Mode.
V=5 m.p.s., 5=8 m.t.s. Values are scaled by 10° and are in units

MONTHLY WEATHER REVIEW
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A
TABLE 4.—Values of |Dlmax for the cases in the Symmetric Mode.
Vmaxr=5 m.p.8., 0=38 m.t.s. Valuesare scaled by 107 and are in units

of sec.-! of sec.—1. & 14s the approrimate distance (in kilometers) from the
equator of the mazimum values.
n=1 n=2
L (km. n=l1 n=2
) Decay | yu=:£2375 ywﬁuzs Decay ywi:l:?.375 ywiﬁuzs Case L (km.)
fam. ' - : DimesX10| 3 Dlmasx107| 5
1000 3.17 3.19 3.30 3.2 3.2l 3.30
B I e i) g o o
3 1 1. . -2 . . ) - . -
4000 0.90 0.95 141 0.99 1.01 141 Decay . - oo 2338 % gg ‘/ 51580 3.86 _\/-pfi~uoo
5000 0.76 0.82 L4 0.87 a.s8 L4 4000 2.20 580
1000 0.17 1260 0.54 1055
2000 0.61 1225 1.03 1045
Yu=H23T5RM_ .. 3000 1.19 1200 3.68 1040
4000 1.79 1175 5.43 1035
5000 2.31 1160 6.95 1030
TaBLE 3.—Values_of 1 lmax for Vthle cases in tlhe Asymztetrifi Mode. 1000 0.08 605 0.31 600
Vmaxr=¥8 m.p.s., 0=3 m.i.s. alues are scaled by 10° and are in - 5 2000 0.23 575 0.90 565
units of sec.”! & is the approzimate distance (in km.) from the U° BRI oo paos 0.3 e 13 pe]
equator of the maximum values 5000 0.32 440 1.25 425
=1 n=2
Case L (km.) I
BloasX108 | 6 | [FlmarX108 | &
1000 3.21 1250 ;;_57 1525 TABLE 5.—Values of |D|nes for the cases in the Asymmetric Mode.
2000 170 1500 .83 1050
DAY oo 3000 L24 1450 144 1000 Same remarks as table §
4000 1.05 1400 131 950 -
5000 0.96 1375 120 925 n=1 ne2
ml vE| me| iml B - R ;
. 1 .
Yomk 2376k 3000 146 1100 1.53 930 IDlmasX107| 8 IDlmar X107 8
4000 1.34 1090 1.43 915
5000 1.32 1085 1.43 910 1000 0. 40 2190 1.08 1560
2000 143 2175 3.62 1540
1000 3.75 560 3.76 550 Decay e 3000 2.80 2150 6. 43 1505
Po==£1125 km %ggg %'g% g% %gg 20 400 .22 2125 8.90 1465
BT e 4000 327 560 3.28 550 5000 552 2080 10.9 1425
5000 3.73 560 3.74 550 1000 0.27 1490 0.98 1375
2000 0.93 1460 322 1350
Yw=cE2TSRM. oo 3000 1,67 1435 5.62 1325
4000 2.35 1400 7.57 1300
5000 2.8 1365 9.05 1275
i . 1000 0.11 700 0.45 700
. . . " 2000 0.29 675 1.14 670
km. For this ¥, in the Symmetric Mode, [{|n.. has ve==u2km...... a%00 040 820 15 !
minimum values for wavelengths in the 4000-5000-km. 5000 0.51 590 2.00 585
range although this is not clear from the table. In the
. . . A
Asymmetric Mode, minimum values of |{|n. occur for
wavelengths in the 2000-3000-km. range.
. A . . .
Maximum values of |D| are found at points sym- In the Asymmetric Mode, the distances from the
metrically equidistant from the equator in both modes. equator to the divergence maxima are given

Tables 4 and 5 list values of |ﬁ|m, along with the ap-
proximate distance of the maxima from the equator.
In the Symmetric Mode this distance is given by y=y,
which satisfies the condition

(FA(R— A% +Byn(A—7)IM oy, — 20067 M5, =0.  (44)
For the decay case, |

= :JC (%‘)1/2. (45)

Maximum values of lﬁ\ are then given by* (in the decay -

case)

1Dl :’(AA%)?) ( % )1/2

4+ Equations (45) and (46) are identical to Rosenthal’s equations (50).

: (46)

by y=yn
which satisfy the condition -

~

(AR (y2— AN+ B (A—v) +BY*]| M,

V=Yg,

2 ~
+3 (1—alyByall}-,, =0 (47)
In the decay case, .
[ ié:?l)]”z,
Yn= [B A—ry

. A B)l/z _% ?:T_Z)
Wiar | —— L ¥/
o (A-H) (7 ¢

Analysis of the ratio 'ﬁAlmaz/ l[)slmaa: (equations (46) and

(48)
and

A
lDAlmazz

(49)

(49)) shows that in the decay case the Asymmetric Mode

divergences are larger than those of the Symmetric Mode
for all wavelengths under consideration. The values of
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TaBLE 6.—Values of the ratto j—ﬁ;’—|
L=2000, n=1 L=5000, n=2
Lat.
(deg.)
Decay |y w] =2375 |y =1125 | Decay | |y»|=2375 |y w|=1125
km. km. km. km.
Symmetric Mode
20.0 0.08 0.06 1. 11 0.75
17.5 0,06 0.05 0.85 0,53
15.0 0.04 0.04 0.62 0.53
12.5 0.03 0.03 0.43 0.39
10.0 0.02 0.02 0.29 0.27 w©*
7.5 0.01 0.01 . 0.16 0.15 0.027
5.0 0. 005 0. 005 0. 003 0.07 0.07 0.017
2.5 0. 001 0. 001 0, 001 0.02 0.02 0. 007
0 0.0 0.0 0.0 0.0 0.0 0.0
20.0 0.07 0,05 2 0. 25
17.5 0.06 0.05 3 0. 45
15.0 0.04 0.04 . 0.37
12.5 0.03 0.03 . 0.28
10.0 0.02 0.02 . 0.20
7.5 0.01 0.01 . 006 5 0.13
5.0 0. 006 Q. 006 0.003 0.09 0.08
2.5 0. 002 0. 002 0. 001 0. 06 0.05

*The ratio is infinite at 1125 km.

A listed in table lc suggest that this relationship holds
in the other cases also.

The maximum divergences increase with wavelength
except for the Symmetric Mode case with y,= 4-1125 km.
For this case, the divergence has maximum values for
wavelengths in the 3000-4000-km. range.

The contribution of the model divergence to vorticity
changes is essentially the same as that described by
Rosenthal [1]. The Asymmetric Mode differs little from
the Symmetric Mode. Table 6 lists values of |fV-V/gv|
for the various cases with L=2000 km., n=1, and L=5000
km., n=2. The contribution is negligible except for
the longer wavelengths with n=2. Here the ratio is
still small when |y,| is small. However, in the decay
cases and for large values of |y,|, the contribution is
appreciable to within 5° of the equator.

The model divergences are extremely small in com-
parison to the observed magnitudes associated with
equatorial disturbances as given by Palmer [3].
pointed out by Rosenthal [1], this discrepancy is probably
due to the lack of a convective heat source in the model.

Values of the ratio lﬁ'ma:/ l §:|,m are given by table 7.
We note that the ratio increases with increasing Iywl
The ratio also increases with wavelength except in the
cases ¥,=— +1125 km. Here, maximum values are found
for wavelengths in the 3000-4000-km. range.

In order to examine the extent to which the perturba-
tion flow is in geostrophic equilibrium, we define

ou ou
3t TV

R =
* Byv

(50a)

As
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TaBLE 7.—Values of the ratio !ﬁlmnx/ I?I-,;mv

Case L (km) | Symmetric | Asymmetric
(a) n=1
1000 6. 34X10-4 1.23X10-3
2000 4, 66X10-28 8.41X10-3
Decay. ... 3000 1. 37X10-2 2. 2610-2
4000 2. 78X10-2 4. 02X10-2
5000 4. 57X10-2 5, 75X10-2
1000 5.17X10-4 8.31X 10+
2000 3. 4X10-3 5. 03X10-3
Yo=4+2870km_________. 3000 1. 02X10-2 1.14X10-2
4000 1, 88 X102 1. 75X10-2
5000 2, 82X10-2 2. 19X10-2
1000 2.43X10* 3. 04104
2000 1.21X10-3 1.03X10-3
Yo=£1125km_______.. 3000 2.17X10-8 1.38X10-3
4000 2. 47X10-3 1.44X10-3
5000 2, 27X10-3 1.38X10-3
(b) n=2
1000 1.74X10-3 3. 30X10-3
2600 1.18X10-2 1, 98X10-2
Decay. ... 3000 3.16X10-2 4,47X10-2
4000 5.86X10-2 6. 79X10-2
8.76X10-2 8.45X10~2
1000 1. 69X10-3 2.96X10-3
2000 1.14X10-2 1. 70X10-2
Yuw==2370km__________ 3000 2. 99X10-2 3. 67X10-2
4000 5.38%X10~2 5. 20X10-2
5000 7.90X10-2 6. 33X10-2
1000 9. 3010~ 1.20X10-3
2000 4,75%10-3 4. 03X10-3
Ho=+£1126km__________ 3000 8. 55103 5, 45X10-3
4000 9. 7910~ 5, 67 X10-3
5000 8.87X10-3 § 37X10-3
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TABLE 8.—Behavior of the rattos Rox, Roy at the equator and at the
meridional extreme of their definition '

Evaluated at =0 Evaluated at lim gy
Y=%tyw

S A[(A—v) —2av]
Ripgmmnomemmmmmeoneoes lT.,z— ®

D ) l_A_ l
Re? | Aty ‘ Aty
Rioom oo ® ®

AD A l
Ryg ------mermmmmoe s ® lA—+7
R%y ___________________ © 0

8D e « 0

A(14-2a) —
S '_(iil! 0
v
3A—vy
RGP l—_y‘l 0
and
W, ., 00
5tV %
Ro=|2t9%|. (50b)

Byu

Substitution of the solutions for % and » into these ex-

pressions yields
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_|Al(A—y)M —2ayM*)
Rbgz— (Az——'yz)]"f (51)
S Akz(Az—’Y'z)M
= | (A=) M— 200y IL] (52)
PO & (B o L A Ve ) 7 114 B
(AZ_ 72)ﬂy2M
Ry= ARXA*—v) M -~ ' (54)
B{ 2(1—a)vBy* M *+[v*+(A—v)By* ) M }

where the superscript § refers to the Symmetric Mode

and A refers to the Asymmetric Mode. (M, M*, M, M*
are defined by equations (24a), (24b), (33a), and (33b).)
R,, and R,, are measures of the geostrophic equiltbrium
of the meridional and zonal velocity components, re-
spectively, Small values of these ratios correspond to
quasi-geostrophic motion and large values indicate
highly ageostrophic flow. In the decay cases, equations
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(51), (52), (53), (54) reduce to the following (superscript
D denotes these cases):

= lr (55)
W=l5r (56)
=it o0
= Aﬁ%@—z - (58)

Table 8 summarizes the behavior of these ratios at the
equator and at the latitudinal limit of their definition.
The latitudinal variation of R, is shown in figure 2 for
L=2000 km., n=1. For each value of y,, R, increases
with wavelength but the shapes of the curves are similar
to those shown by figure 2. Except in the decay case,
where R;” is independent of latitude, RS, is smallest near
the equator and approaches infinity as y approaches y,.
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Ficure 2.—Values of the ratio Ry, (equation (50a)) for cases in the Asymmetric Mode (denoted by superscript 4) and Symmetric Mode

(superscript S).
the case y,= 11125 km.

The solid line represents values for the decay case, the broken line the case y,= =+ 2375 km., and the dashed line
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Hence, in the symmetrical cases, the meridional compo-
nent of the perturbation wind is most nearly geostrophic
at the equator-and becomes: increasingly ageostrophic at
higher latitudes. On the other hand, the perturbation
v-component “becomes increasingly ageostrophic in the
symmetric case as the perturbations are confined to
smaller and smaller (decreasing |y,|) bands of latitude
surrounding the equator. As indicated above, the meridi-
onal component of the perturbation wind becomes increas-
ingly ageostrophic as the wavelength increases.

In the asymmetric cases, Ri approaches infinity as the
equator is approached. Hence, near the equator, in the
Asymmetric Mode, the v-component of the perturbation
wind is highly ageostrophic. In the decay case, the v-
component becomes near geostrophic at higher latitudes.
In the other cases, » is highly ageostrophic near y=1v,, as
well as near the equator. Geostrophy is, however, ap-
proached in a narrow band of latitudes intermediate to
the equator and y=y,.

Figure 3 shows the latitudinal variation of R, for
L=2000 km. and n=1. R)” is independent of wave-
length. For the other cases, in contrast to R, Ry,
shows a small decrease with increases in wavelength.

1128 2375
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The curves for other wavelengths, however; are very
much like these shown by figure 3. The values of RS
show that the perturbation u-component is highly age-
ostrophic near the equator, that it becomes less age-
ostrophic as the meridional extent of the-perturbation is
diminished, and slightly less ageostrophic as the wave-
length is increased.

The behavior of the u-component, in the Asymmetric
Mode, is similar except that R; tends to infinite values
near y=1700 km. (15° lat.) in the decay case and near
y=1,/2 in the other cases. As the equator is approached,
the perturbation zonal wind tends toward geostrophy but
R} still remains greater than 0.5.

Finally, we note that, in the Symmetric Mode, R,
increases and R,, decreases as n (the number of levels of
nondivergence) increases. The opposite is true in the
Asymmetric Mode. The changes in By, and Ry, with n
are most marked when |y,| is large.

4, SYNOPTIC ASPECTS OF THE SOLUTIONS

Figures 4, 5, and 6 present analyses of the pressure
and wind fields for the Asymmetric Decay case (fig. 4),
the Symmetric (fig. 5) and Asymmetric (fig. 6) cases

2375
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Figure 3.-—Values of the ratio Ro, (equation (50b)) for cases in the Asymmetric Mode (denoted by superscript A) and Symmetric Mode

(superscript S).
the case y,= 41125 km.

The solid line represents values for the decay case, the broken line the case y,= + 2375 km., and the dashed line
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with 9,=41125 km. Here p=1000 mb., {=0, 7=3
m.t.s. units, L=2000 km., n=1, and vp,,=5 m.sec.™
Similar charts were given by Rosenthal [1] for the Sym-
metric Decay case (with the same values for the various
parameters). The figures given here have essentially the
same scales which facilitates comparisons. The stream-
lines shown were constructed from isogon analyses. The
base state pressure height fields were computed from the
relation d¢/oy=—gyU, U=—7.5 m./sec.

THE ASYMMETRIC DECAY CASE

Figure 4a shows the pressure-height field and stream-
lines for the perturbation motion; both fields are sym-
metric about the equator. The pressure-height and
circulation centers are each equidistant from the equator
and alternate with longitude. The Highs and Lows are
centered near 20° N. and S.; the circulation centers are
near 14° N. and S. In both hemispheres, anticyclonic
circulation is associated with high pressure and cyclonic
motion with low pressure. The pressure centers are
characterized by non-zero components of perturbation
velocity. Recalling R4, (fig. 3) we note these regions
are characterized by a highly ageostrophic perturbation
u~-component. Similarly the equatorial region, where
there are non-zero perturbation pressure-height values,
is where v is highly ageostrophic (see fig. 2, Rg). The
maximum magnitude of the perturbation pressure-height
is approximately 7 m., which is twice that of the Sym-
metric Decay case (see Rosenthal, [1] fig. 2).

The combined perturbation and base state height
fields and streamlines are shown in figure 4b. Here we
find a weak Low (minimum height of —0.4 m.) centered
on the equator with an easterly zonal current passing
through the center of the Low. The height gradients
in the zone bounded by 10°N.-10°S. are very weak
and would probably be undetectable in the present-day
synoptic observational network.

The relative vorticity and divergence patterns are
shown in figures 4c and 4d. The vorticity pattern is
asymmetric about the equator with maximum values
located about 14° from the equator. Positive values
are associated with counterclockwise motion, hence with
cyclonic motion in the Northern Hemisphere and anti-
cyclonic motion in the Southern Hemisphere. The
opposite is true for the negative values. Therefore,
as in the Symmetric Decay case, cyclonic relative vorticity
is always associated with low values of perturbation
pressure-height. The divergence pattern is symmetric
about the equator with maximum values of convergence
and divergence about 20° {from the equator. Sirilar to
the Symmetric Mode, the divergence centers are to the
west of the cyclonic relative vorticity centers and the
convergence centers are to the west of the anticyclonic
relative vorticity centers. These distributions agree with
those previously deduced from the behavior of the wave
speed c=U—A.

Walter James Koss
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In contrast with the Symmetric Decay case, the total
pressure-height field and streamlines (fig. 4b) depict wave
disturbances which have maximum amplitude between
10° and 15° from the equator.

THE SYMMETRIC CASE Y= £1125 KM.

The configuration of pressure patterns and streamlines
for this case are similar to those of the decay case dis-
cussed by Rosenthal [1] except that here we note the effect
of the vanishing of the perturbation meridional wind
component at a finite distance from the equator. Fig-
ure 5a shows the perturbation pressure-height field and
streamlines. As in the decay case, the height field is
asymmetric about the equator and consists of alternating
Highs and Lows. The maximum amplitude is slightly
larger than 1 m. which is about one-third that of the
decay case. The circulation centers are alternating
clockwise, counterclockwise cells centered on the equa-
tor and, of course, the perturbation circulation reduces
to east-west motion at y,= 41125 km.

The combined perturbation and base state pressure-
beight field and streamlines are depicted in figure 5b.
The streamline pattern is essentially that of the decay case
except that the amplitude of the streamlines vanishes
near 10° N. and 10°S. At these latitudes the ageostrophic
character of the wind field is shown by the fact that the
streamlines and pressure-height contours are out of phase.
The minimum pressure-heights in the equatorial Lows
are approximately —0.2 m.

The relative vorticity pattern (fig. 5¢) consists of alter-
nating positive and negative centers which coincide with
the perturbation circulation centers (fig. 5a). Low (high)
perturbation pressure-height values are coupled with
cyclonic (anticyclonic) motion. The configuration of
the divergence pattern (fig. 5d) is also similar to the decay
case with divergence (convergence) to the west of the
cyclonic (anticyclonic) relative vorticity. In comparison
to the decay case, we find (1) a reduction of the amplitude
of the pressure-height perturbation, (2) marked decreases
in the amplitude of the model divergence, and (3) a slight
increase in the amplitude of the model relative vorticity.

THE ASYMMETRIC CASE Y= +£1125 KM.

The remarks concerning the symmetry and relative dis-
tributions of the various fields presented in the discussion
of the Asymmetric Decay case apply also to this case.
Here we will note the differences in the distributions.
Figure 6a shows the pressure-height contours and stream-
lines of the perturbation motion. The circulation and
pressure centers are nearly coincident but the amplitude
of the pressure-height field is less than that in the decay
case. The combined base state and perturbation height
field and streamlines (fig. 6b) have the same character as
those in the decay case except the Low centered on the
equator has a slight increase in amplitude (to —0.6 m.).
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The relative vorticity and divergence patterns are shown
in figures 6¢ and 6d. In this mode, the effects of de-
creasing the lateral extent of the disturbance are similar
to those in the Symmetric Mode except for a slight in-
crease in the amplitude of the equatorial Low in the
total pressure-height field.

5. SUMMARY AND CONCLUSIONS

We have considered adiabatic, inviscid, quasi-hydro-
static, 8-plane motions in which the perturbation meridio-
nal velocity component » is (A) symmetrically, and (B)
asymmetrically distributed about the equator. The base
state flow was taken as a constant easterly current. In
these two modes of motion, » was constrained to vanish
(1) as the distance from the equator approached infinity,
and (2) at selected finite distances from the equator.
Under these conditions, the solutions yield distributions
and magnitudes of pressure-height and relative vorticity
which are reasonable and meteorologically acceptable.
The magnitude of the model divergence is, however,
considerably smaller than observed values [3]. This is
the result of the adiabatic, nonviscous constraints placed
upon the motions. The magnitude of the model pressure-
height gradient is extremely small; for this reason the
perturbations studied here would probably be undetect-
able in the pressure field with present observational
systems.

The wave speeds for all cases considered are such that
the waves progress westward faster than the basic current,
but less rapidly than the analogous nondivergent waves.
The departures from the nondivergent wave speeds are
considerable at longer wavelengths, especially in the
Asymmetric Mode. Hence, in all cases, the divergence
pattern is such that the westward movement of the
perturbation is retarded ; there is divergence (convergence)
to the west of cyclonic (anticyclonic) relative vorticity.
In both modes, the model divergence increases with the
perturbation wavelength except in the Symmetric Mode
when the meridional extent of the perturbation is small.
Equatorial waves of small meridional extent have maxi-
mum divergence for mid-range values of wavelength, and
become less divergent with increases in wavelength. Also,
in both modes, the motions become less divergent as the
meridional extent of the perturbation is decreased.

The model relative vorticity decreases with wavelength
except in the Asymmetric Mode when the meridional
extent of the wave is small. Here the relative vorticity
increases at longer wavelengths because of the dominating
role of the meridional shear of the zonal component of
perturbation wind.

Perturbations centered on the equator have north-
south components of velocity which (1) are near geo-
strophic at low latitudes, (2 Ybecome less geostrophic as the
meridional extent of the disturbance is decreased, and
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(3) become less geostrophic as the perturbation wave-
length is increased. Perturbations which are centered off
the equator have meridional velocity components which
are near geostrophic only in the latitudinal zones asso-
ciated with their circulation centers. In both modes,
the east-west velocity component is near geostrophic only
at large distances from the equator. In the above
remarks, ‘mear” geostrophic implies that the ratios
Ry, Ry, are approximately 0.2 or less. This condition
holds for only certain values of the parameters, and then
it may hold over only a part of the latitudinal zone being
considered. In general, the acceleration terms are at
least the same order of magnitude as the Coriolis term
and, hence, their role in the wind-pressure balance cannot
be ignored

In a series of numerical experiments conducted at the
National Hurricane Research Laboratory, the symmetric
solutions (equations (21)-(24), (26)-(29)) to the linearized
equations (1)-(4) were used as initial and boundary
conditions for a numerical non-linear primitive equation
forecast model. In the cases considered, the patterns
moved with very nearly the wave speeds deduced above
and with very little distortion over four days of real
time. This indicates that for the types of motion con-
sidered here, the solutions to the linear equations are
extremely good approximations to the non-linear solutions.

APPENDIX

Equation (13) can be written as

A(A+7)(A '—'Y)+ [’Y (2a+1)a)=0 (A1)
which is factorable when a=0.
For non-zero values of a the roots are
A=A+ B~ B [ A+ B*+ B]"* (A2)
~——+\/ —3 <A2+A> (A3)
and
A= \/ ( +A> (A4)
where
A= vZ+(za+1)-1;§]/3
and
B=1%
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